PHYSICAL REVIEW E, VOLUME 63, 047102
Universality of S-matrix correlations for deterministic plus random Hamiltonians

N. Mae and S. lida
Faculty of Science and Technology, Ryukoku University, Otsu 520-2194, Japan
(Received 2 August 2000; published 21 March 2001

We studyS-matrix correlations for random matrix ensembles with a HamiltotdanH + ¢, in which H,
is a deterministidN X N matrix ande belongs to a Gaussian random matrix ensemble. Using Efetov’s super-
symmetry formalism, we show that in the linhit—c correlation functions o§-matrix elements are universal
on the scale of the local mean level spacing: the dependertdg effiters into these correlation functions only
through the averag® matrix and the average level density. This statement applies to each of the three
symmetry classe@nitary, orthogonal, and symplectic
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. INTRODUCTION P(H)xexd —NtrV(¢)]=exd —Ntr V(H—Hg)].
1.1
The energy levels and/or the scattering matrices of a va- ) ) ) .
riety of physical systems with randomnegsg., complex For thg unitary ensgmble, Brim et al. [4] dlscussed the uni-
nuclei, disordered conductors, classically chaotic systemé’,erszal'ty of4two-p0|nt energy level correlations ()
etc) exhibit universal behavior: the statistical properties of ¢ /2 9¢". Generain-point energy level correlation func-
the observables can be separated into the universal parts a gns were szhown to be universal l:_>y Bhe an_d H|I_<am|[_5] .
the nonuniversal parts specific to individual systems. Ther or .V(‘P)oc‘p - (The other type of unitary noninvariant d'?”"
has been increasing evidence that the universal parts depe Ht'on P(H)ocexp{—Ntr[V(H)— HHol} was also consid-
. " ~ered by Zinn-Justin6].)

only on the fundamental symmetries of the underlying
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c;d;

E+w
2

Hamiltonian and are well described by a random matrix en- Recently, wd 7] numerically found the same universality

amptonian and are well gescribed by a rando alrX €Nt the Smatrix correlations for the distribution function Eq.
semble with a Gaussian distributideee Ref[1] for a re-
view). According to the fundamental symmetries, there arehe averags matrix S taken as the parameter. the correla-
three classical random matrix ensembles: Systems with br&— 9 P ’
semble and time-reversal invariant systems by either thghqrpos_e in thlg presel?t rl13rief Report is tol analytically show
symplectic or the orthogonal ensemble depending ofMS universality in all three symmetry classes. More pre-
their many successful applications, random matrix models m K
lack a firm foundation. In particular, the Gaussian form of IS (E— 2) '

izl—ll 11:[1 20 2
nience and is not motivated by physical principles. It is —
therefore necessary and important to investigate whether sta- =fg(wp(E),S(E)), 12
L ) . wherem, n, k;, I, are non-negative integers; the overbar

probability distribution consistent with fundamental symme- .~ " o énsémble averag% The un%/ersal funcfigns
tries. '

. Mfhogonal, unitary, and symplectic classesd are indepen-
broich and Weidenniler [3] considered a non-Gaussian den% ofH'O exce);;,t for theyingicega- b, E ci i1} th;Ie
and unitary invariant probability distribution:P(H) ' S
tonian matrixH andV(H) is independent oN and arbitrary depend orHo.
provided it confines the spectrum to some finite interval and
For each of the thrge symmetry classes, using Efetov’s su- Following the approach of Ref8], we write the scatter-
persymmetry formalism, they showed that both energy Ieve}ng| matrix S(E) as
elements are independent®fH) and hence universal if the _ R .
arguments of the correlators are scaled correctly. San(E)=8ap—2i 7>, W aul D(E) ™71 ,uWop
o, v

(1.2) with V(¢)xg? fgr the orthogonal ensembile, i.e., with
ken time-reversal symmetry are described by the unitary erfions are independent df, while S depends orHo. Our
whether spin-orbit coupling is present or f&i. In spite of cisely, we show that
the probability distribution is used for mathematical conve-
tistical properties are identical for more general forms of the

There has been some work along this direction. Hacke depend on the symmetry classg8=(1, 2, and 4 for or-
<exg—Ntr V(H)], whereN is the dimension of the Hamil- the average local level densipyand the averag8 matrix S
generates a smooth mean level density, in the IXito. Il. THE MODEL
correlation functions and correlation functions &imatrix

For realistic situations, it is likely that the Hamiltonian is

not completely random but contains some regular parts. If (213
the total HamiltoniarH =Hy+ ¢ whereH is a deterministic  in which

part ande is a random one, the probability distribution takes

a unitary noninvariant form: D(E)=E+i0"—H+imWW', (2.1b
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whereE is the energy, 0 is a positive infinitesimalH rep- N

resents the projection of the full Hamiltonian onto the inter- £(o)=— - trg(o?)—trgIn
action region, andWV describes the coupling between the 2\

eigenstates of the interaction region and the scattering states

in the free-propagation region. The indicag refer to the _zngWJp(g)wT} (3.3b
physical scattering channels, apdv refer to the complete

orthonormal states characterizing the interaction region.

w_ .
D(a)—7L+mWWT|_

We assume that thd X N matrix H can be written as Here, trg denotes the graded tra@,o)=E—o—Hg, o~
=w—i0", Jy(g)=diadJ;(B),J1(F),J»(B),J(F)], and
H=Ho+ o, (22 Lg=diag(1-1,1-1). We have definedE=(E;+E;)/2
andw=E,—E;.
whereH, is a given, nonrandom, Hermitian matrix, aads In the limit N—oo, this integral can be done with the use

a member of the Gaussian ensemble. The symmetry proper§f the saddle-point approximation. We are interested in cor-
of H, is the same as that @f. The independent elements of relations involving energy differences of the order of the
the matrix ¢ are uncorrelated random variables with amean level spacing-O(N™'). Hence, we expand(o) in
Gaussian probability distribution centered at zero. The sedP?owers ofw:

ond moments for the unitary ensemble are given by

N

— A\ L(o)~— — trg(o?) —trg IN[D() ]
(P}/,V(P,U,,V/:Wﬁluv/(sll#, . (23) 2)\2

—trgIN[1+i7D(o) *WW'L]

(See Ref[9] for the orthogonal and symplectic cagdsere, ) o1 +

\ is a strength parameter. —trgIn{1-27{D(o) +imWWL] "L WJI,(g)W'}

w
IIl. DERIVATION + 7"9[7)(")71'-]' (3.4
For definiteness, we show the derivation for the unitary

ensemble andh,n<2 in Eq.(1.2). The generalization to the It should be noted that such an expansion is not possible for
other symmetry classes and/or higher valuesnaindn is ~ WW' becaus&V/"W~O(1). Of the fiveterms in expression
straightforward and commented upon in Sec. IV. The deri{3.4) the last three terms a®(1). Thefirst two terms are
vation is based on the use of Efetov's supersymmetryO(N) and determine the saddle poinfP. To derive the
method[8,10]. We take the notation from Ref8] and use saddle-point equation we writd, and o°" in the formsH,

the [1,2] block notation for the matrix representation in =Udiag(ey, . . . ,en)U and o*P=T"1o3PT, whereoyl is
which 1 and 2 refer to the retarded and advanced blockgiagonal andr has the form
respectively.
Consider the following generating function: (14t V2 it o5
= . 1/2 . .
Z(J)_de[Dp(Ep)+27TWJp(F)WT] 5 —lty (1+tpt10)
def D ,(Ep) —27WJI,(B)W']’ ' _ _
The saddle-point equation reads
where D,(E,)=diad D(E;),D'(E,)], Jo(F)
=diad J;(F),J>(F)], and J,(B) =diad J1(B),J,(B)]. The . a2 XN 1
scattering matrix can be generated fr@fJ) as follows: UDp:W 2 = s - (3.6)
n=1E—-op—¢€,
S (E.) 5o dZ(J) L5 i dZ(J) L
S S Pt S S B , . . .
p(Eplab™ Qab 335(B)oal ;_, ab 35(Flnal ;o For ordinary variablegrather than matricesEq. (3.6) has

N+1 solutions,N—1 of which are real, and the remaining
two may have nonzero imaginary parts according to the val-
ues ofE. Taking the two complex solutions £iA) [5], we
obtainoP=r —iAL. The explicit expressions afandA are
not available because E¢3.6) becomes in general an\(
+1)th polynomial. Several authors have discussed the prop-
erties of Eq.(3.6) (see, e.g.[4,11]). Hereafter we consider
Z(J):f dlolexp L)}, (3.33 the case Where~0(1)._ From the relation betwee and

the average level density [Eq. (3.83], this means thaE

lies far away from the edge of the spectrum. Substitutiigy
where for o in Eq. (3.4), we find

(3.2
where Sp(Ep):diag[S(El),ST(Ez)] and L=diag(1-1).

Using standard proceduf&], we can represent the average
of Z(J) as an integral over aX4 graded matrix fieldr:
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L(0%P)~—trgIn[1+i7D(cP) " *WWL] and
+ S g D(0°) " HL]~ trg In{1— 27 W[ D( 0P 2mW'D(o%P) +i mWWL]~*W
—i -Iire _ —17v_71-1 -1
+irWWIL] WL Jd,(0)}. 3.7 =T L[S(E)-1] " T-T "MT} .
_ (3.99
The one-point functiong(E) and S(E) are evaluated at
the saddle point. We thus have Here
NA
p(BE)=— (3.8a tyotor — ity 1+ 1yt ?
A M=| .
—it (1 +tyto) — ot
and (3.10

Sy(E)=1-2iaW'[D(o) +i 7WW'L] *WL.

(3.8D and we used the properfyL T 1=L+2M. More explicitly,

Egs.(3.99 and(3.99 can be expressed with the usetef

Using these one-point functiopgE) andS(E) we can write andty, as follows:

each term of Eq(3.7) as follows:
- trg I[1+i7D(°P) *WWIL]=trg In(1+ T35t 15t57)
trg In[1+i7D(o°P) " *WW'L]=trg In{1—[S,(E) - 1]LM},

(3.99 =trg In(1+ Tpstyt 1)
o
7”9[1)(0'5’))71'-] =—2imo” p(E)trg(tits), (3.113

(3.9b and

|
, ) S(E)(1+ Tagtytp) 11 — ity L+ tot1) VAT 1) +togtsn)
2aWID(oP) +i7WWIL] *W=i| Vo1 . — ;
—ito(L+tyato) " (7 51 +tiato) 1-SYE)(1+ Tygtortsn) *
(3.11bH

where T;,=1—S(E)S'(E) and T5,=1—S'(E)S(E) [12]. Wwe can show Eq(1.2) for m>2 or n>2 along exactly par-
(The derivation is given in the AppendjxThus we find that ~ allel lines. _ .
all the dependence of E3.7) on W andH, is completely In summary, we have shown thidte local universality in
absorbed inp(E) and S(E). Equations(3.93, (3.9b, and  the bulk scaling limitstill holds for theSmatrix correlation
(3.99 show universality. The explicit forms of the correla- functions even though unitary invariance is broken by the
tion functionsf ,; are identical with those for the Gaussian addition of a deterministic matrix to the ensemble. The start-
ensemble and can be found in appropriate referefses, ing random matrix model contains parametéfandH, that
e.g.,[1,13). are specific to individual systems. After ensemble averaging,
these original parameters are completely absorbed into pa-

IV. SUMMARY rametersS(E) andp(E). ThusS-matrix correlaton functions
of the type Eq(1.2) have universal forms that are indepen-

For the seke of simplicity, we presented the derivation fordent ofH, but forg(E) and p(E) and are determined only
only the unitary ensemble._ In either the orthogonal or theoy the symmetry of the ensemble. This holds for all three
symplectic ensemble, the internal structurestgfand ty symmetry classe@rthogonal, unitary, and symplecticThe

differ from the unitary case. However, our derivaton is com- rivation can be similarl lied to th tral correlation
pletely independent of such structures and applies equally t erivation can be simiiarly applied 1o the spectral correlatio
unctions. Thus we have extended the previous results by

the orthogonal and symplectic ensembles. Taking the genel=",™. ) _ .
ating fun(g:]tion ymp g g Brezin and Hikami[5] to the orthogonal and symplectic en-

sembles although only two-point functions are considered.
maxm,n} defD. (E.)+WX(F)W'] The present .results were derived under the restrictions
7(3)= H prp p . @D that the correlation functions contain only two values of en-
q=1 de(Dp(Ep)—WJg(B)WT] ergy,E; andE,, and thatV(¢) has a Gaussian form. It is a
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natural conjecture that the universality of tBenatrix corre- APPENDIX: DERIVATION OF EQS. (3.113 AND (3.11h
lation functions holds even if these two restrictions are re-

moved. The increase of the number of energy arguments To derive Egs(3.113 and(3.110, we use the fact that
makes the structure ef2® more complicated. With this point for any analytic function F we have tiF(tyt10)
taken properly into account, a similar derivation is probable.=F(ti5t,1)t15. Using the identity

The extension to the general formét¢) seems less trivial

because we are no longer able to use a Hubbard-Stratonovich

transformation in order to introduce a graded matrixThe a b

simlar procedure used in R4B] may be incorporated into trg In( . d) =trgIn(a—bd~*c)+trgin(d), (A1)
the present derivation.

ACKNOWLEDGMENTS we obtaf Eq. (3.113. With the abbreviation Y
Stimulating discussions with K. Nohara and K. Takahashi={T 'L[S,(E)—1] T—T !MT} !, using the property
are acknowledged with thanks. T 1=LTL, we get the equation
|
— 1 . 1/2 -1
_([S(E)—l] FtyotoA ityp(1+tpts0) A A2)
itoa(1+tt) A —[ST(E)— 1]~ tyts A

whereA=[S(E) —1] 1+ [ST(E)— 1]+ 1. With the use of the formula

a b\? ( (a—bd c) ! —a 'b(d-cath)? A
¢ d |—-dc(a—bd*c)*! (d—ca 'b)~t )’ (A3
the[1,1] block of Y can be written as follows:
Y1 =A Y[SHE)— 1] 1+t AHIS(E) — 1] A ST (E) - 1] 1 —tyto} % (A4)
Using the property
A=[S'(E)~ 1] *[S"(E)S(E) - 1][S(E)~ 1] *=[S(E) ~ 1] [S(E)S'(E) - 1][S'(E)~1] %, (AS)
we obtain thg1,1] block of Eq.(3.110. Similarly, the[2,1] block of Y can be written as follows:
Yor=ito(1+tyto) M4 ST(E) = 1171+ ty AL 1AY . (A6)

Substituting Eq(A4) for Y, in Eq. (A6), we obtain thd2,1] block of Eq.(3.11b. The other blocks are obtained along exactly
parallel lines.
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