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Universality of S-matrix correlations for deterministic plus random Hamiltonians

N. Mae and S. Iida
Faculty of Science and Technology, Ryukoku University, Otsu 520-2194, Japan

~Received 2 August 2000; published 21 March 2001!

We studyS-matrix correlations for random matrix ensembles with a HamiltonianH5H01w, in which H0

is a deterministicN3N matrix andw belongs to a Gaussian random matrix ensemble. Using Efetov’s super-
symmetry formalism, we show that in the limitN→` correlation functions ofS-matrix elements are universal
on the scale of the local mean level spacing: the dependence ofH0 enters into these correlation functions only
through the averageS matrix and the average level density. This statement applies to each of the three
symmetry classes~unitary, orthogonal, and symplectic!.
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I. INTRODUCTION

The energy levels and/or the scattering matrices of a
riety of physical systems with randomness~e.g., complex
nuclei, disordered conductors, classically chaotic syste
etc.! exhibit universal behavior: the statistical properties
the observables can be separated into the universal parts
the nonuniversal parts specific to individual systems. Th
has been increasing evidence that the universal parts de
only on the fundamental symmetries of the underlyi
Hamiltonian and are well described by a random matrix
semble with a Gaussian distribution~see Ref.@1# for a re-
view!. According to the fundamental symmetries, there
three classical random matrix ensembles: Systems with
ken time-reversal symmetry are described by the unitary
semble and time-reversal invariant systems by either
symplectic or the orthogonal ensemble depending
whether spin-orbit coupling is present or not@2#. In spite of
their many successful applications, random matrix mod
lack a firm foundation. In particular, the Gaussian form
the probability distribution is used for mathematical conv
nience and is not motivated by physical principles. It
therefore necessary and important to investigate whether
tistical properties are identical for more general forms of
probability distribution consistent with fundamental symm
tries.

There has been some work along this direction. Hack
broich and Weidenmu¨ller @3# considered a non-Gaussia
and unitary invariant probability distribution:P(H)
}exp@2N tr V(H)#, whereN is the dimension of the Hamil
tonian matrixH andV(H) is independent ofN and arbitrary
provided it confines the spectrum to some finite interval a
generates a smooth mean level density, in the limitN→`.
For each of the three symmetry classes, using Efetov’s
persymmetry formalism, they showed that both energy le
correlation functions and correlation functions ofS-matrix
elements are independent ofP(H) and hence universal if the
arguments of the correlators are scaled correctly.

For realistic situations, it is likely that the Hamiltonian
not completely random but contains some regular parts
the total HamiltonianH5H01w whereH0 is a deterministic
part andw is a random one, the probability distribution tak
a unitary noninvariant form:
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P~H !}exp@2N tr V~w!#5exp@2N tr V~H2H0!#.
~1.1!

For the unitary ensemble, Bre´zin et al. @4# discussed the uni-
versality of two-point energy level correlations forV(w)
5w2/21gw4. Generaln-point energy level correlation func
tions were shown to be universal by Bre´zin and Hikami@5#
for V(w)}w2. „The other type of unitary noninvariant distr
bution P(H)}exp$2N tr@V(H)2HH0#% was also consid-
ered by Zinn-Justin@6#.…

Recently, we@7# numerically found the same universalit
of the S-matrix correlations for the distribution function Eq
~1.1! with V(w)}w2 for the orthogonal ensemble, i.e., wit
the averageS matrix S̄ taken as the parameter, the corre
tions are independent ofH0 while S̄ depends onH0. Our
purpose in the present Brief Report is to analytically sh
this universality in all three symmetry classes. More p
cisely, we show that
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5 f b„vr~E!,S̄~E!…, ~1.2!

where m, n, ki , l j are non-negative integers; the overb
denotes the ensemble average. The universal functionf b
depend on the symmetry classes (b51, 2, and 4 for or-
thogonal, unitary, and symplectic classes! and are indepen-
dent ofH0, except for the indices$ai ,bi ,ki ,cj ,dj ,l j%, while
the average local level densityr and the averageS matrix S̄
depend onH0.

II. THE MODEL

Following the approach of Ref.@8#, we write the scatter-
ing matrix S(E) as

Sab~E!5dab22ip(
m,n

W†
am@D~E!21#mnWnb ,

~2.1a!

in which

D~E!5E1 i012H1 ipWW†, ~2.1b!
©2001 The American Physical Society02-1
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whereE is the energy, 01 is a positive infinitesimal,H rep-
resents the projection of the full Hamiltonian onto the int
action region, andW describes the coupling between th
eigenstates of the interaction region and the scattering s
in the free-propagation region. The indicesa,b refer to the
physical scattering channels, andm,n refer to the complete
orthonormal states characterizing the interaction region.

We assume that theN3N matrix H can be written as

H5H01w, ~2.2!

whereH0 is a given, nonrandom, Hermitian matrix, andw is
a member of the Gaussian ensemble. The symmetry prop
of H0 is the same as that ofw. The independent elements o
the matrix w are uncorrelated random variables with
Gaussian probability distribution centered at zero. The s
ond moments for the unitary ensemble are given by

wmnwm8n85
l2

N
dmn8dnm8 . ~2.3!

~See Ref.@9# for the orthogonal and symplectic cases.! Here,
l is a strength parameter.

III. DERIVATION

For definiteness, we show the derivation for the unita
ensemble andm,n<2 in Eq.~1.2!. The generalization to the
other symmetry classes and/or higher values ofm and n is
straightforward and commented upon in Sec. IV. The d
vation is based on the use of Efetov’s supersymme
method@8,10#. We take the notation from Ref.@8# and use
the @1,2# block notation for the matrix representation
which 1 and 2 refer to the retarded and advanced blo
respectively.

Consider the following generating function:

Z~J!5
det@Dp~Ep!12pWJp~F !W†#

det@Dp~Ep!22pWJp~B!W†#
, ~3.1!

where Dp(Ep)5diag@D(E1),D†(E2)#, Jp(F)
5diag@J1(F),J2(F)#, and Jp(B)5diag@J1(B),J2(B)#. The
scattering matrix can be generated fromZ(J) as follows:

Sp~Ep!ab5dab2 i
]Z~J!

]Jp~B!ba
U

J50

L5dab2 i
]Z~J!

]Jp~F !ba
U

J50

L,

~3.2!

where Sp(Ep)5diag@S(E1),S†(E2)# and L5diag(1,21).
Using standard procedure@8#, we can represent the averag
of Z(J) as an integral over a 434 graded matrix fields:

Z̄~J!5E d@s#exp$L~s!%, ~3.3a!

where
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L~s!52
N

2l2
trg~s2!2trg lnFD~s!2

v2

2
L1 ipWW†L

22pLgWJp~g!W†G . ~3.3b!

Here, trg denotes the graded trace,D(s)5E2s2H0 , v2

5v2 i01, Jp(g)5diag@J1(B),J1(F),J2(B),J2(F)#, and
Lg5diag(1,21,1,21). We have definedE5(E11E2)/2
andv5E22E1.

In the limit N→`, this integral can be done with the us
of the saddle-point approximation. We are interested in c
relations involving energy differencesv of the order of the
mean level spacing;O(N21). Hence, we expandL(s) in
powers ofv:

L~s!'2
N

2l2
trg~s2!2trg ln@D~s!#

2trg ln@11 ipD~s!21WW†L#

2trg ln$122p@D~s!1 ipWW†L#21LgWJp~g!W†%

1
v2

2
trg@D~s!21L#. ~3.4!

It should be noted that such an expansion is not possible
WW† becauseW†W;O(1). Of the fiveterms in expression
~3.4! the last three terms areO(1). Thefirst two terms are
O(N) and determine the saddle pointssp. To derive the
saddle-point equation we writeH0 andssp in the formsH0

5U21diag(e1 , . . . ,eN)U andssp5T21sD
spT, wheresD

sp is
diagonal andT has the form

T5S ~11t12t21!
1/2 i t 12

2 i t 21 ~11t21t12!
1/2D . ~3.5!

The saddle-point equation reads

sD
sp5

l2

N (
m51

N
1

E2sD
sp2em

. ~3.6!

For ordinary variables~rather than matrices!, Eq. ~3.6! has
N11 solutions,N21 of which are real, and the remainin
two may have nonzero imaginary parts according to the v
ues ofE. Taking the two complex solutions (r 6 iD) @5#, we
obtainsD

sp5r 2 iDL. The explicit expressions ofr andD are
not available because Eq.~3.6! becomes in general an (N
11)th polynomial. Several authors have discussed the p
erties of Eq.~3.6! ~see, e.g.,@4,11#!. Hereafter we conside
the case whereD;O(1). From the relation betweenD and
the average level densityr @Eq. ~3.8a!#, this means thatE
lies far away from the edge of the spectrum. Substitutingssp

for s in Eq. ~3.4!, we find
2-2
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L~ssp!'2trg ln@11 ipD~ssp!21WW†L#

1
v2

2
trg@D~ssp!21L#2trg ln$122pW†@D~ssp!

1 ipWW†L#21WLgJp~g!%. ~3.7!

The one-point functionsr(E) and S̄(E) are evaluated a
the saddle point. We thus have

r~E!5
ND

pl2
~3.8a!

and

S̄p~E!5122ipW†@D~sD
sp!1 ipWW†L#21WL.

~3.8b!

Using these one-point functionsr(E) andS̄(E) we can write
each term of Eq.~3.7! as follows:

trg ln@11 ipD~ssp!21WW†L#5trg ln$12@S̄p~E!21#LM %,

~3.9a!

v2

2
trg@D~ssp!21L#522ipv2r~E!trg~ t12t21!,

~3.9b!
-
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and

2pW†@D~ssp!1 ipWW†L#21W

5 i $T21L@S̄p~E!21#21T2T21MT%21.

~3.9c!

Here,

M5S t12t21 2 i t 12~11t21t12!
1/2

2 i t 21~11t12t21!
1/2 2t21t12

D
~3.10!

and we used the propertyTLT215L12M . More explicitly,
Eqs. ~3.9a! and ~3.9c! can be expressed with the use oft12
and t21 as follows:

trg ln@11 ipD~ssp!21WW†L#5trg ln~11T12t12t21!

5trg ln~11T21t12t21!

~3.11a!

and
2pW†@D~ssp!1 ipWW†L#21W5 i S S̄~E!~11T21t12t21!
2121 2 i t 12~11t21t12!

1/2~T 12
211t21t12!

21

2 i t 21~11t12t21!
1/2~T 21

211t12t21!
21 12S̄†~E!~11T12t21t12!

21 D ,

~3.11b!
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where T12512S̄(E)S̄†(E) and T21512S̄†(E)S̄(E) @12#.
~The derivation is given in the Appendix.! Thus we find that
all the dependence of Eq.~3.7! on W andH0 is completely
absorbed inr(E) and S̄(E). Equations~3.9a!, ~3.9b!, and
~3.9c! show universality. The explicit forms of the correla
tion functions f b are identical with those for the Gaussia
ensemble and can be found in appropriate references~see,
e.g.,@1,13#!.

IV. SUMMARY

For the sake of simplicity, we presented the derivation
only the unitary ensemble. In either the orthogonal or
symplectic ensemble, the internal structures oft12 and t21
differ from the unitary case. However, our derivaton is co
pletely independent of such structures and applies equal
the orthogonal and symplectic ensembles. Taking the ge
ating function

Z~J!5 )
q51

max$m,n% det@Dp~Ep!1WJp
q~F !W†#

det@Dp~Ep!2WJp
q~B!W†#

, ~4.1!
r
e

-
to
r-

we can show Eq.~1.2! for m.2 or n.2 along exactly par-
allel lines.

In summary, we have shown thatthe local universality in
the bulk scaling limitstill holds for theS-matrix correlation
functions even though unitary invariance is broken by
addition of a deterministic matrix to the ensemble. The sta
ing random matrix model contains parametersW andH0 that
are specific to individual systems. After ensemble averag
these original parameters are completely absorbed into

rametersS̄(E) andr(E). ThusS-matrix correlaton functions
of the type Eq.~1.2! have universal forms that are indepe

dent ofH0 but for S̄(E) andr(E) and are determined only
by the symmetry of the ensemble. This holds for all thr
symmetry classes~orthogonal, unitary, and symplectic!. The
derivation can be similarly applied to the spectral correlat
functions. Thus we have extended the previous results
Brézin and Hikami@5# to the orthogonal and symplectic en
sembles although only two-point functions are considere

The present results were derived under the restricti
that the correlation functions contain only two values of e
ergy,E1 andE2, and thatV(w) has a Gaussian form. It is
2-3
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natural conjecture that the universality of theS-matrix corre-
lation functions holds even if these two restrictions are
moved. The increase of the number of energy argume
makes the structure ofsD

sp more complicated. With this poin
taken properly into account, a similar derivation is probab
The extension to the general form ofV(w) seems less trivia
because we are no longer able to use a Hubbard-Stratono
transformation in order to introduce a graded matrixs. The
simlar procedure used in Ref.@3# may be incorporated into
the present derivation.
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APPENDIX: DERIVATION OF EQS. „3.11a… AND „3.11b…

To derive Eqs.~3.11a! and ~3.11b!, we use the fact tha
for any analytic function F we have t12F(t21t12)
5F(t12t21)t12. Using the identity

trg lnS a b

c dD 5trg ln~a2bd21c!1trg ln~d!, ~A1!

we obtain Eq. ~3.11a!. With the abbreviation Y

[$T21L@S̄p(E)21#21T2T21MT%21, using the property
T215LTL, we get the equation
tly
Y5S @S̄~E!21#211t12t21A it 12~11t21t12!
1/2A

it 21~11t12t21!
1/2A 2@S†~E!21#212t21t12A

D 21

, ~A2!

whereA5@S̄(E)21#211@S†(E)21#2111. With the use of the formula

S a b

c dD
21

5S ~a2bd21c!21 2a21b~d2ca21b!21

2d21c~a2bd21c!21 ~d2ca21b!21 D , ~A3!

the @1,1# block of Y can be written as follows:

Y115A21$@S̄†~E!21#211t12t21A%$@S̄~E!21#21A21@S̄†~E!21#212t12t21%
21. ~A4!

Using the property

A5@S̄†~E!21#21@S̄†~E!S̄~E!21#@S̄~E!21#215@S̄~E!21#21@S̄~E!S̄†~E!21#@S̄†~E!21#21, ~A5!

we obtain the@1,1# block of Eq.~3.11b!. Similarly, the@2,1# block of Y can be written as follows:

Y215 i t 21~11t12t21!
1/2$@S̄†~E!21#211t12t21A%21AY11. ~A6!

Substituting Eq.~A4! for Y11 in Eq. ~A6!, we obtain the@2,1# block of Eq.~3.11b!. The other blocks are obtained along exac
parallel lines.
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@4# E. Brézin, S. Hikami, and A. Zee, Phys. Rev. E51, 5442
~1995!.
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